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Digital Filtering in Antelope

• All digital filtering in Antelope utilizes 
time-domain convolution and recursive 
methodologies.

• Digital time-domain filtering offers significant 
advantages over FFT based frequency-domain 
filtering.
1. Can operate on infinite time series in a 

continuous fashion.
2. Minimal edge effects that can be confined within 

finite time windows.
3. Much more computationally efficient.
4. Simplicity of implementation.



Filtering Basics
• Filtering is defined as the convolution of two 

functions (from https://en.wikipedia.org/wiki/Convolution).

The convolution of f(t) and g(t) is written (f∗g)(t), 

• Filtering is fundamental to seismic data processing.



Filtering Basics
Another fundamental representation of data in seismology is its frequency-
domain spectrum, as  computed using the Fourier transform or its related 
Laplace transform.
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If ℱ denotes the Fourier transform operator, then ℱ " and ℱ 7 are the Fourier 
transforms of "(') and 7(') respectively. Then

ℱ " ∗ 7 = ℱ " 9 ℱ 7

Where 9 denotes point-wise multiplication.

By applying the inverse Fourier transform, we can write:

" ∗ 7 = ℱ2: ℱ " 9 ℱ 7



Filtering Basics
• Implementation of Fourier transforms is done with the 

Discrete Fourier Transform (DFT) using a clever digital 
algorithm known as the Fast Fourier Transform (FFT).

• All DFTs, regardless of how they are implemented, are 
necessarily computed over finite time windows, usually 
no more than thousands of time samples, which causes 
them to be subject to an artifact known as 
“wraparound”.

• FFT computational efficiency of order 5 * N * log2(N) vs 
brute force direct time-domain convolution computation 
efficiency of order 2 * N * N.

• However, most convolutions involve one function (the 
filter impulse response) with a reduced and constant 
value of N.



Antelope Filtering
• All filtering of time sampled waveforms in 

Antelope are done in the time domain and do not 
involve the computations of signal spectra using 
FFTs.

• All Antelope digital time domain filters can be 
applied to arbitrary time series and can be applied 
to continuous time series of indefinite length.

• There are no inherent time windowing parameters 
needed by the Antelope filters as there would be if 
filtering were done in the frequency domain. No 
“wraparound” effects.

• The Antelope time domain filters are very 
computationally efficient compared to frequency 
domain methods



Antelope Filtering
• All Antelope time domain filters are implemented 

with the wffil(3) library which provides general 
purpose interfaces to various time domain 
waveform filter methods. 

• Specific filtering groups are defined in 
wffilbrtt(3), which includes Butterworth, 
generalized S-domain polynomials, 
differentiator/integrator, Wood-Anderson 
instrument response, generalized FIR filters, and 
wffilave(3), which provides a variety of 
averaging filters.



Antelope Filtering
• In digital filtering, continuous signals of time, ! " , are represented 

as discrete time series, 
#[%] = !(%)), where % is the integer sample index ranging over 
minus infinity to plus infinity and T is the constant time sampling 
increment. 

• The Antelope filtering library provides straightforward digital 
convolution filtering, also known as Finite Impulse Response or 
FIR filtering. If |,[-] ./0123 are the 4 FIR filter coefficients, the the 
output, 5[%], of the filtered input signal, #[%], will be:

5[%] = 6
./0

123
#[% − - − 8] 9 ,[-]

Where 8 is a sample offset that defines the 0 time lag of the FIR filter.

• FIR filtering in Antelope is used primarily to simulate datalogger 
anti-alias filtering and primarily to support data resampling.



Recursive Digital Filtering
• Most filtering in Antelope for the purpose of data 

processing, such as the filters used in orbdetect, 
for example, is done using recursive digital filters, 
also known as Infinite Impulse Response, or IIR, 
filters.

• A new application, filter_designer, is available 
in the 5.8 release of Antelope. This app provides for 
the design and visualization of Antelope IIR filters.



Design of Recursive Digital Filters
• Basic approach:

1. Design the filter as if it were an analog filter in 
the ! domain (Laplace transform domain with 
! = #$).

2. Convert the ! domain representation of the filter 
transfer function to the % domain representation 
(Z transform domain with % = &'().

3. Construct a “realizable” and hopefully stable 
recursion relation using the % domain transfer 
function.

4. Filter the time sampled data using the recursion 
relation.



Recursive Digital Filter Recursion Relation
for (i=2; i<nsamp; i++) {

yout[i] = xin[i]*G + xin[i-1]*NM1
+ xin[i-2]*NM2
- yout[i-1]*DM1
- yout[i-2]*DM2;

}

• This is the c code for filtering an input sampled function, xin[i], to 
produce a filtered output function, yout[i].

• The G, NM1, NM2, DM1, DM2 values are all floating point constants. The 
recursion comes about due to the feedback of the two previous output 
values into the forward computation of the present output value.

• This implements a single filter stage that can represent any second order 
differential operator.

• This replaces the two forward FFTs, followed by a multiplication of two 
complex spectral values over the entire frequency range, followed by a 
reverse FFT required when using frequency domain filtering.

• This is by its definition a realizable relation. Its filter characteristics and 
stability are determined by the constant coefficients. The job of designing a 
digital recursion filter is to determine the constant coefficients based upon 
desired characteristics.



Z-transforms
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• Note that a "0operator applied to a time series is equivalent 
to time shifting the time series by / index values. 

• Also note that an 70 Laplace operator applied to a 
continuous time function is equivalent to differentiating the 
continuous time series / times, or integrating the continuous 
time series −/ times if / < 0.

• These properties provide logical connections between digital 
recursion relations as representations of " domain transfer 
functions and linear differential equations as representations 
of 7 domain transfer functions.



Recursion Equations to Z-transforms
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• If 5 = 2, 6 = 2, -' = G, -/ = NM1, -7 = NM2, 4/ = DM1, 
47 = DM2, this relation is identical to the c code 
relation shown earlier.
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• In other words, we can easily derive a software code 
recursion formula to implement a Z-transform transfer 
function of a ratio of rational polynomials in 9



Differential Equations to S-transforms
"̈ # + 2&'("̇ # + '(*" # = ,(#)

• Simple harmonic linear oscillator

Since  ℒ "̈(#) = 0*1 0 and ℒ "̇(#) = s 1 0

0*1 0 + 02&'(1 0 + '(*1 0 = 2(0)

3 0 = 1(0)
2(0) =

1
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• In other words, we can easily derive an S-transform 
transfer function of a ratio of rational polynomials 
in 0 from a differential equation.



Strategy
• We are almost there. 
1. Start by specifying a filter as a set of differential operators on the 

data. Typically, the filter transfer functions are designed in the 
frequency domain to accentuate certain frequencies in the data. 
This part is facilitated by filter_designer.

2. Convert the differential equations into S-domain transfer 
functions that are ratios of rational polynomials in !. This part is 
done automatically by the Antelope libraries.

3. Derive Z-domain transfer functions that are ratios of rational 
polynomials in " from the S-domain transfer functions. We need 
a conformal S to Z domain mapping function to do this.

4. Derive digital recursion relations from the Z-domain transfer 
functions. This part is done automatically by the Antelope 
libraries.

5. We now have simple formulas we can apply to the data to 
implement the filters.



S to Z Mapping

• The exact mapping is not helpful since we cannot derive 
Z-domain transfer functions from S-domain transfer 
functions as ratios of rational polynomials in !

• Fortunately, there is a well known and well used 
approximation that allows the derivation of Z-domain 
transfer functions from S-domain transfer functions that 
produces ratios of rational polynomials in !. This is 
known as the bilinear S to Z transform.
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S to Z Mapping – Frequency Warping
• Note that by using the S to Z bilinear transform, any 

arbitrary S-domain transfer function represented as a ratio 
of rational polynomials in ! will produce a Z-domain 
transfer function as a ratio of rational polynomials in " (try 
the harmonic oscillator as an example to convince yourself).

• The main artifact of the approximation is that it effectively 
warps the frequency axis so that the S-domain frequency 
range of minus infinity to plus infinity gets warped into a Z-
domain frequency range of minus the Nyquist frequency to 
plus the Nyquist frequency. 
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Where #$ is the analog, or S-domain, frequency and 
#+ is the digital, or Z-domain frequency.



S to Z Mapping – Frequency Warping
• A good description of the effects of the S to Z bilinear 

transform can be found in 
https://en.wikipedia.org/wiki/Bilinear_transform:

“The discrete-time filter behaves at frequency !" the same 
way that the continuous-time filter behaves at frequency 
⁄$ % tan ⁄% $!" . Specifically, the gain and phase shift that 

the discrete-time filter has at frequency !" is the same gain 
and phase shift that the continuous-time filter has at 
frequency ⁄$ % tan ⁄% $!" . This means that every feature, 
every "bump" that is visible in the frequency response of the 
continuous-time filter is also visible in the discrete-time 
filter, but at a different frequency.”

https://en.wikipedia.org/wiki/Bilinear_transform


S to Z Mapping – Frequency Pre-warping
• In order to counteract the warping effects of the S to Z 

bilinear transform, pre-warping of critical frequency 
parameters in the filters, such as cutoff frequencies and 
resonance frequencies, are pre-warped using the 
warping relations so that the digital implementation of 
the filter will produce response spectra results that 
preserve the intent of the filter design.

• The S to Z bilinear transform and the pre-warping are 
done automatically by the Antelope libraries.

• Watch out for response stages that have infinite response 
at infinite frequency. Infinite response at zero frequency 
is ok.



filter_designer
• Python script using the new Antelope pythonbqplot(3Y) 

python graphics libraries





Filter Stages
type S-domain transfer 

function
Antelope filter 
string

Description

1st order low pass !
" + !

DF C first order denominator polynomial 
suitable as a zero frequency 
normalized first order low-pass 
filter

1st order high pass "
" + !

DFDIF1 C first order denominator polynomial 
with a single differentiation 
suitable as an infinite frequency 
normalized first order high-pass 
filter

2nd order low pass !
"$ + %" + !

DS B C second order denominator 
polynomial suitable as a zero 
frequency normalized second 
order low-pass filter

2nd order high pass "$
"$ + %" + !

DSDIF2 B C second order denominator 
polynomial with a double 
differentiation suitable as an 
infinite frequency normalized 
second order high-pass filter

…

• Filter stages are defined in wffilbrtt(3)



• The red line is the digital Z-domain response. The thin blue 
line is the analog response. Note the effects of the frequency 
warping.







• Basic seismometer response (note the filter string).



• Strong motion response function.



• Grab real instrument responses





• Inverted filter stages are inherently unstable. They should 
only be used in combination with non-inverted filter stages. 




