
filter_designer – An
Interactive Tool for Designing

Digital Filters

Danny Harvey
Boulder Real Time Technologies, Inc.

Antelope User Group Meeting
ARSO, Slovenian Environment Agency, Ljubljana

2018 May

1

Digital Filtering in Antelope

• All digital filtering in Antelope utilizes
time-domain convolution and recursive
methodologies.

• Digital time-domain filtering offers significant
advantages over FFT based frequency-domain
filtering.
1. Can operate on infinite time series in a

continuous fashion.
2. Minimal edge effects that can be confined within

finite time windows.
3. Much more computationally efficient.
4. Simplicity of implementation.

Filtering Basics
• Filtering is defined as the convolution of two

functions (from https://en.wikipedia.org/wiki/Convolution).

The convolution of f(t) and g(t) is written (f∗g)(t),

• Filtering is fundamental to seismic data processing.

Filtering Basics
Another fundamental representation of data in seismology is its frequency-
domain spectrum, as computed using the Fourier transform or its related
Laplace transform.

!" # = ℱ "(')
=)ℒ "(')

+,-.
=)/(0)

+,-.

= 1
23

3
42-.5" ' 6'

If ℱ denotes the Fourier transform operator, then ℱ " and ℱ 7 are the Fourier
transforms of "(') and 7(') respectively. Then

ℱ " ∗ 7 = ℱ " 9 ℱ 7

Where 9 denotes point-wise multiplication.

By applying the inverse Fourier transform, we can write:

" ∗ 7 = ℱ2: ℱ " 9 ℱ 7

Filtering Basics
• Implementation of Fourier transforms is done with the

Discrete Fourier Transform (DFT) using a clever digital
algorithm known as the Fast Fourier Transform (FFT).

• All DFTs, regardless of how they are implemented, are
necessarily computed over finite time windows, usually
no more than thousands of time samples, which causes
them to be subject to an artifact known as
“wraparound”.

• FFT computational efficiency of order 5 * N * log2(N) vs
brute force direct time-domain convolution computation
efficiency of order 2 * N * N.

• However, most convolutions involve one function (the
filter impulse response) with a reduced and constant
value of N.

Antelope Filtering
• All filtering of time sampled waveforms in

Antelope are done in the time domain and do not
involve the computations of signal spectra using
FFTs.

• All Antelope digital time domain filters can be
applied to arbitrary time series and can be applied
to continuous time series of indefinite length.

• There are no inherent time windowing parameters
needed by the Antelope filters as there would be if
filtering were done in the frequency domain. No
“wraparound” effects.

• The Antelope time domain filters are very
computationally efficient compared to frequency
domain methods

Antelope Filtering
• All Antelope time domain filters are implemented

with the wffil(3) library which provides general
purpose interfaces to various time domain
waveform filter methods.

• Specific filtering groups are defined in
wffilbrtt(3), which includes Butterworth,
generalized S-domain polynomials,
differentiator/integrator, Wood-Anderson
instrument response, generalized FIR filters, and
wffilave(3), which provides a variety of
averaging filters.

Antelope Filtering
• In digital filtering, continuous signals of time, ! " , are represented

as discrete time series,
#[%] = !(%)), where % is the integer sample index ranging over
minus infinity to plus infinity and T is the constant time sampling
increment.

• The Antelope filtering library provides straightforward digital
convolution filtering, also known as Finite Impulse Response or
FIR filtering. If |,[-] ./0123 are the 4 FIR filter coefficients, the the
output, 5[%], of the filtered input signal, #[%], will be:

5[%] = 6
./0

123
#[% − - − 8] 9 ,[-]

Where 8 is a sample offset that defines the 0 time lag of the FIR filter.

• FIR filtering in Antelope is used primarily to simulate datalogger
anti-alias filtering and primarily to support data resampling.

Recursive Digital Filtering
• Most filtering in Antelope for the purpose of data

processing, such as the filters used in orbdetect,
for example, is done using recursive digital filters,
also known as Infinite Impulse Response, or IIR,
filters.

• A new application, filter_designer, is available
in the 5.8 release of Antelope. This app provides for
the design and visualization of Antelope IIR filters.

Design of Recursive Digital Filters
• Basic approach:

1. Design the filter as if it were an analog filter in
the ! domain (Laplace transform domain with
! = #$).

2. Convert the ! domain representation of the filter
transfer function to the % domain representation
(Z transform domain with % = &'().

3. Construct a “realizable” and hopefully stable
recursion relation using the % domain transfer
function.

4. Filter the time sampled data using the recursion
relation.

Recursive Digital Filter Recursion Relation
for (i=2; i<nsamp; i++) {

yout[i] = xin[i]*G + xin[i-1]*NM1
+ xin[i-2]*NM2
- yout[i-1]*DM1
- yout[i-2]*DM2;

}

• This is the c code for filtering an input sampled function, xin[i], to
produce a filtered output function, yout[i].

• The G, NM1, NM2, DM1, DM2 values are all floating point constants. The
recursion comes about due to the feedback of the two previous output
values into the forward computation of the present output value.

• This implements a single filter stage that can represent any second order
differential operator.

• This replaces the two forward FFTs, followed by a multiplication of two
complex spectral values over the entire frequency range, followed by a
reverse FFT required when using frequency domain filtering.

• This is by its definition a realizable relation. Its filter characteristics and
stability are determined by the constant coefficients. The job of designing a
digital recursion filter is to determine the constant coefficients based upon
desired characteristics.

Z-transforms

! " = $ %['] =)
*+,-

-
%[']",*

$ %[' + /] = "0$ %['] = "0! "

" = 123 = 1456

• Note that a "0operator applied to a time series is equivalent
to time shifting the time series by / index values.

• Also note that an 70 Laplace operator applied to a
continuous time function is equivalent to differentiating the
continuous time series / times, or integrating the continuous
time series −/ times if / < 0.

• These properties provide logical connections between digital
recursion relations as representations of " domain transfer
functions and linear differential equations as representations
of 7 domain transfer functions.

Recursion Equations to Z-transforms

! " = $
%&'

(
) " − + , -% −$

.&/

0
![" − 2] , 4.

• If 5 = 2, 6 = 2, -' = G, -/ = NM1, -7 = NM2, 4/ = DM1,
47 = DM2, this relation is identical to the c code
relation shown earlier.

8 9 = $
%&'

(
: 9 , 9;% , -% −$

.&/

0
8 9 , 9;. , 4.

< 9 = 8(9)
:(9) =

∑%&'(9;% , -%
1 + ∑.&/0 9;. , 4.

• In other words, we can easily derive a software code
recursion formula to implement a Z-transform transfer
function of a ratio of rational polynomials in 9

Differential Equations to S-transforms
"̈ # + 2&'("̇ # + '(*" # = ,(#)

• Simple harmonic linear oscillator

Since ℒ "̈(#) = 0*1 0 and ℒ "̇(#) = s 1 0

0*1 0 + 02&'(1 0 + '(*1 0 = 2(0)

3 0 = 1(0)
2(0) =

1
0* + 02&'(+ '(*

• In other words, we can easily derive an S-transform
transfer function of a ratio of rational polynomials
in 0 from a differential equation.

Strategy
• We are almost there.
1. Start by specifying a filter as a set of differential operators on the

data. Typically, the filter transfer functions are designed in the
frequency domain to accentuate certain frequencies in the data.
This part is facilitated by filter_designer.

2. Convert the differential equations into S-domain transfer
functions that are ratios of rational polynomials in !. This part is
done automatically by the Antelope libraries.

3. Derive Z-domain transfer functions that are ratios of rational
polynomials in " from the S-domain transfer functions. We need
a conformal S to Z domain mapping function to do this.

4. Derive digital recursion relations from the Z-domain transfer
functions. This part is done automatically by the Antelope
libraries.

5. We now have simple formulas we can apply to the data to
implement the filters.

S to Z Mapping

• The exact mapping is not helpful since we cannot derive
Z-domain transfer functions from S-domain transfer
functions as ratios of rational polynomials in !

• Fortunately, there is a well known and well used
approximation that allows the derivation of Z-domain
transfer functions from S-domain transfer functions that
produces ratios of rational polynomials in !. This is
known as the bilinear S to Z transform.

! = #$%

& = 1
(ln(!)

& ≈ 2
(

1 − !01
1 + !01

S to Z Mapping – Frequency Warping
• Note that by using the S to Z bilinear transform, any

arbitrary S-domain transfer function represented as a ratio
of rational polynomials in ! will produce a Z-domain
transfer function as a ratio of rational polynomials in " (try
the harmonic oscillator as an example to convince yourself).

• The main artifact of the approximation is that it effectively
warps the frequency axis so that the S-domain frequency
range of minus infinity to plus infinity gets warped into a Z-
domain frequency range of minus the Nyquist frequency to
plus the Nyquist frequency.

#$ =
2
' tan

'
2 #+

#+ =
2
' tan

,- '
2 #$

Where #$ is the analog, or S-domain, frequency and
#+ is the digital, or Z-domain frequency.

S to Z Mapping – Frequency Warping
• A good description of the effects of the S to Z bilinear

transform can be found in
https://en.wikipedia.org/wiki/Bilinear_transform:

“The discrete-time filter behaves at frequency !" the same
way that the continuous-time filter behaves at frequency
⁄$ % tan ⁄% $!" . Specifically, the gain and phase shift that

the discrete-time filter has at frequency !" is the same gain
and phase shift that the continuous-time filter has at
frequency ⁄$ % tan ⁄% $!" . This means that every feature,
every "bump" that is visible in the frequency response of the
continuous-time filter is also visible in the discrete-time
filter, but at a different frequency.”

https://en.wikipedia.org/wiki/Bilinear_transform

S to Z Mapping – Frequency Pre-warping
• In order to counteract the warping effects of the S to Z

bilinear transform, pre-warping of critical frequency
parameters in the filters, such as cutoff frequencies and
resonance frequencies, are pre-warped using the
warping relations so that the digital implementation of
the filter will produce response spectra results that
preserve the intent of the filter design.

• The S to Z bilinear transform and the pre-warping are
done automatically by the Antelope libraries.

• Watch out for response stages that have infinite response
at infinite frequency. Infinite response at zero frequency
is ok.

filter_designer
• Python script using the new Antelope pythonbqplot(3Y)

python graphics libraries

Filter Stages
type S-domain transfer

function
Antelope filter
string

Description

1st order low pass !
" + !

DF C first order denominator polynomial
suitable as a zero frequency
normalized first order low-pass
filter

1st order high pass "
" + !

DFDIF1 C first order denominator polynomial
with a single differentiation
suitable as an infinite frequency
normalized first order high-pass
filter

2nd order low pass !
"$ + %" + !

DS B C second order denominator
polynomial suitable as a zero
frequency normalized second
order low-pass filter

2nd order high pass "$
"$ + %" + !

DSDIF2 B C second order denominator
polynomial with a double
differentiation suitable as an
infinite frequency normalized
second order high-pass filter

…

• Filter stages are defined in wffilbrtt(3)

• The red line is the digital Z-domain response. The thin blue
line is the analog response. Note the effects of the frequency
warping.

• Basic seismometer response (note the filter string).

• Strong motion response function.

• Grab real instrument responses

• Inverted filter stages are inherently unstable. They should
only be used in combination with non-inverted filter stages.

